NASA JPL: Auto Scaling Advantage

Advanced Rapid Imaging and Analysis

Hook Hua, Jet Propulsion Laboratory, California Institute of Technology

Jet Propulsion Laboratory California Institute of Technology

© 2017 California Institute of Technology. Government sponsorship acknowledged.

Reference herein to any specific commercial product, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Challenge: Automated and rapid remote sensing for urgent disaster response

Automated data system are required to analyze large quantities of data from NASA NISAR, other satellite missions, and rapidly expanding GPS networks

Going from artisan to automation: use system engineering approach to translate specialized data analysis into operational capability

Demonstrate response to hazards with standardized set of data products for decision and policy makers

Temporal records of ground deformation

Spatial maps of ground deformation

Coseismic ground deformation

Coseismic damage

Earthquake Models

Advanced Rapid Imaging and Analysis (ARIA)

NASA

Urgent Response Analysis in AWS Cloud

Urgent Response Analysis in AWS Cloud

Dynamic Scaling in Earth Science Data System

The size of the science data system compute nodes can automatically grow/shrink based on processing demand

Auto Scaling group policies
Target tracking scaling policies

Auto Scaling enabling runs of over 100,000 **vCPUs**

Earth Science Data System in AWS

NASA OCO-2 L2 Full Physics processing operational in AWS

- Processing of L2 full physics data products in Amazon cloud across multiple regions
- Scaled up thousands of compute nodes
- Demonstrated capability of higher internal data throughput rates than NISAR needs

Number of compute nodes over time

Per node transfer rate over time

Considerations for Scaling In/Out Events

Scaling up (scale out)

- Target tracking scaling policies
- Scaling up in batches + rest periods

Scaling down (scale in)

- What policy to set to scale down? CPU/network utilization
- Potential stateful domain knowledge only known within the instances
- Instance protection

					US-West-2 (Oregon)							
					Hourly Costs				Per vCPU Costs			
instance	vCPU	memory	memory-cpu ratio	disks	on-demand (\$/hr)	reserved 1-yr upfront (\$/ hr)		spot linux (\$/ hr)	on-demand (\$/cpu/hr	upfront (\$		spot linux (\$/
m2.4xlarge	8	68.4	8.55	2 x 840	\$1.0780	\$0.4087	\$0.244	\$0.1000	\$0.1348	\$0.0511	\$0.030	\$0.0125
cc2.8xlarge	32	60.5	1.89	4 x 840	\$2.0000	\$0.9131	\$0.613	\$0.2705	\$0.0625	\$0.0285	\$0.019	\$0.0085
m3.2xlarge	8	30.0	3.75	SSD 2 x 80	\$0.6160	\$0.3750	\$0.2300	\$0.0700	\$0.0770	\$0.0469	\$0.028	\$0.0088
c3.8xlarge	32	60.0	1.88	SSD 2 x 320	\$1.6800	\$0.9920	\$0.6280	\$2.4001	\$0.0525	\$0.0310	\$0.019	\$0.0750
r3.8xlarge	32	244.0	7.63	SSD 2 x 320	\$2.8000	\$1.4860	\$0.9820	\$2.8000	\$0.0875	\$0.0464	\$0.030	\$0.0875
c3.xlarge	4	7.5	1.88	SSD 2 x 40	\$0.2310	\$0.1370	\$0.0870	\$0.0353	\$0.0578	\$0.0343	\$0.021	\$0.0088

- Auto Scaling works well with Spot Instances
- Major cost savings (75%–90% savings over on-demand)...if can use Spot Instances
- Compute instances terminated if market prices exceed your bid threshold

Fleet Management for High Resiliency

Auto Scaling and the "Market Maker"

This OCO-2 data production run of 1000 x 32vCPUs affected the market prices

"Thundering Herd"

Compute fleet instances

Fleet of ASG compute instances calling same services at same time

"API rate limit exceeded"

Service

"Jittering" the API calls

- Introduce *randomizations* to API calls
- Distributes load on infrastructure

NASA

Next generation NASA missions

Estimated Daily "Keep Up" Volume (TB)

